

Intelligent Transportation Systems

Stelios Timotheou

Assistant Professor

Department of Electrical and Computer Engineering KIOS Research and Innovation Center of Excellence University of Cyprus

University of Cyprus Imperial College London

Development of practically-oriented student-centred education in the field of modelling of Cyber-Physical Systems Training School for Academics in Partner Countries funded by:

Overview

- Importance of Intelligent Transportation Systems (ITS)
- The future of mobility
- Research Activities in ITS
- Educational Activities in ITS

§
[0]

www.kios.ucy.ac.cy

§
[00]

Introduction

Motivation

- Road transportation systems account for (in the EU alone):
 - 25% of the total energy consumption,
 75% of petroleum fuel consumption
 - 22000 fatalities/year
 - 18% of total GHG Emissions
 - Total cost
 - Fuel: ~ €160 B
 - Environmental effects: €176 B
 - Accidents: € 232 B
 - Congestion accounts for one work week/year per person.

Introduction

Potential solutions to traffic congestion

- Construct new roads
 - Difficult and costly to expand roads
 - Not likely to happen on a large scale
- Reduce Traffic
 - Alternative transportation means
 - Congestion charging
- Increase existing infrastructure capacity
 - Intelligent Transportation Systems (ITS)

ITS application areas

- ITS solutions aim to reduce travel time, ease delay and congestion, improve safety, and reduce pollutant emissions by integrating electronic, sensing, information and communication technologies into the transportation system.
- Main Application Categories
 - Traffic Management
 - Transportation Pricing Systems
 - Traveler Information
 - Public Transportation
 - Vehicle Control Systems

) Ú

Enabling ITS technologies

- Location-based technologies (GPS)
 - Navigation, warning systems, estimation of vehicle-miles travelled, data collection
- Computing Platforms (on-board computers, smart phones)
 - Navigation, data collection, driver services
- In-car Sensors (radars, cameras, lidars)
 - Driver assistive systems, autonomous driving
- Communication solutions (V2V and V2I)
 - Cooperation between infrastructure and vehicles
- Intelligent Software Algorithms
 - Optimal traffic management and control, optimal navigation, intelligent vehicle control

The future of mobility

Transport revolution

Autonomous Vehicles

Electric Vehicles

Connectivity

Shared Mobility Services

Transport revolution

 Analysts claim that by 2030 95% of transport will be done by fleets of electric, connected and autonomous vehicles (eCAVs).

> "We are on the cusp of the fastest, deepest, most consequential disruption of transportation in history".

> > Source: RethinkX (independent think tank)

"Autonomous vehicles

is the largest and most impactful industry on the planet."

Source: Jensen Huang, NVIDIA CEO, CES 2018

§
[0]

Transport revolution

Individual Car Ownership

Mobility as a Service (MaaS)

§
[0]

< S Í O C

Challenges

Safety

Deadly accident of vehicle in autonomous driving mode

Traffic management

Coordination

Challenges

Cyber-security threats

Human-Vehicle Interaction

Research Activities in ITS

www.kios.ucy.ac.cy

§
[0]

Research Directions

- Development of intelligent monitoring and control algorithms for real-time management of contemporary ITS:
 - Maximize efficiency and reliability
 - Estimation and prediction of the road conditions with emerging technologies
 - Traffic control strategies
 - Identifying the presence and alleviating the effects of sensors faults.
- Investigate challenges in future ITS
 - Involve the integration of connected and automated vehicles.
 - Develop novel architectures, protocols and algorithms for monitoring, control and security for road transportation systems.

ÕíOC

KIOS CoE Research Contributions

- Dynamic traffic demand management and control using connected vehicles (V2I communications)
- Unsignalized intersection crossing using Connected and Autonomous Vehicles (CAVs) (V2I or V2V communications)
- Other contributions

Dynamic traffic demand management and control

www.kios.ucy.ac.cy

Õ[OC

Õío

Problem Statement

- Inputs
 - Specific road transportation system with connected vehicles
 - Vehicle requests to enter the network (time and O-D pair)
- Objective
 - Minimize the total travel time of all vehicles
- Outputs
 - Route followed from each vehicles in the network

Macroscopic Fundamental Diagram

www.kios.ucy.ac.cy

< Sigon Sigon

Demand Management

Traffic Demand Management

- Shift (in-time) \rightarrow delay vehicles at the origin
- Shift (in-space) → utilize alternative paths

Individual vs Collective Optimum

K<

 Routing methods should consider the benefit of the "whole" as opposed to the benefit of the individual [*]

[*] Çolak, Serdar, Antonio Lima, and Marta C. González. "Understanding congested travel in urban areas." Nature communications 7 (2016): 10793.

Road Reservations Architecture

www.kios.ucy.ac.cy

K **Š**ľOC

www.kios.ucy.ac.cy

Problem Solution

Inputs

- Specific road transportation system with connected vehicles
- Vehicle requests to enter the network (time and O-D pair)
- State of different road links at present and future times (reservations)

Objective

- Minimize the total travel time of all vehicles
- Outputs
 - Route followed from each vehicles in the network
 - Delay at the origin node for each vehicle

Simulation Results

www.kios.ucy.ac.cy

Demonstration

 $\mathbf{\Sigma}$

Unsignalized intersection crossing using CAVs

www.kios.ucy.ac.cy

ČOC

www.kios.ucy.ac.cy

Problem Statement

Objective: Optimize tradeoff between travel time and fuel consumption **Constraints**

- Vehicle dynamics
- Lateral collision safety
- Rear-end collision safety
- Physical constraints

Assumptions

- Controller uses a FIFO Policy
- No other road users (i.e. bicycles, pedestrians)

Simulation results

Use of empirical fuel consumption metamodel

Increase in travel time of 20% leads to a 50% reduction in fuel consumption

www.kios.ucy.ac.cy

(@)[OC

Autonomous Intersection Crossing

Other Contributions

www.kios.ucy.ac.cy

Other Contributions

- Traffic state estimation with bound guarantees
- Fault-tolerant traffic state estimation
- Event-based communications in public transportation systems
- Data offloading transfers through intervehicle communication transmissions
- Electric vehicle routing with charging in transportation networks using probabilistic models
- Distributed network traffic signal optimization (using I2I)
- Origin-destination matrix estimation using Bayesian theory and mathematical programming

KIOS CoE Interests and Expertise in ITS

Problems of interest

- Traffic control of urban and highway networks (conventional/CAVs)
- Traffic Estimation and prediction
- Fault-tolerance in traffic networks and CAVs
- Communication Protocols in CAV-rich environments
- Coordination among fully autonomous vehicles

Areas of expertise

- Optimization
- Control
- Fault diagnosis
- Communications

www.kios.ucy.ac.cy

§
[00]

- ECE 807: CIS Applications I Fundamentals (6 hours)
- Lecture 1 (2 hours)
 - Introduction to Intelligent Transportation Systems (ITS)
 - Monitoring Control and Security of ITS
 - Future Mobility
- Lecture 2 (2 hours)
 - Fundamental concepts of traffic flow theory
 - Microscopic modelling
- Lecture 3 (2 hours)
 - Macroscopic modelling
- Tutorial Session (2 hours)
 - SUMO microscopic traffic simulator
- ITS-related Project
 - Simulate and examine traffic phenomena in SUMO (link to traffic flow theory)

(<) [</pre>

- ECE 808: CIS Applications II Advanced (6 hours)
- Lecture 1: Estimation and Control in Highway Networks (3 hours)
 - Estimation of traffic state variables using KF and MHE
 - Traffic estimation in the presence of faulty measurements
 - Investigation of traffic control strategies using techniques from control and optimization
 - Lecture 2: Estimation and Control in Urban Traffic Networks (3 hours)
 - The concept of the Macroscopic Fundamental Diagram
 - Estimation of regional parameters
 - Regional Control Strategies for Urban Traffic Networks (Route Guidance, Perimeter Control, Demand Management)
- Tutorial Session (2 hours)
 - How to utilize practical optimization tools for traffic estimation and control
 - **ITS-related Project**
 - Traffic estimation using KF and MHE for a realistic transportation network

(@)[OC

Thesis Dissertations in ITS

- Practical and Research-oriented topics on monitoring and control of ITS
- Utilize traffic flow theory and mathematical theory from courses related to control, optimization and estimation
- Different types of theses: theoretical, simulation-based, experimental
- Integrate students pursuing their thesis in the KIOS ITS research group

Seminars in ITS

- External keynote lectures
- Internal lectures from UCY researchers

%
ioc

Teaching Philosophy

- Apply meaningful rather than rote learning
 - Help students link traffic concepts with everyday-life examples
- Have learning transfer in mind
 - Help students to be able to transfer what they learn in other application contexts
- Teach state-of-the-art concepts and methods
- Use different audiovisual means to illustrate concepts
- Expose students to experts working in ITS
- Help students learn state-of-practice software tools
 - Traffic simulation, optimization, estimation
- Link theory to real-world problems

(@)[OC

Conclusions

- Intelligent Transportation Systems is an exciting area for various engineering disciplines
- Transport is at the cusp of a revolution brought by electric, connected and automated vehicles, as well as shared mobility
- ITS provides great opportunities to:
 - Perform exciting research
 - Undertake a professional career
- Important to incorporate in educational activities

δĩος

Thank you for listening

